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Abstract

We consider the problem of adapting semantic
segmentation models to new target domains, only
from the trained source model, without the source
data. Not only is this setting much harder than
if one had access to the source data, this is
necessary in many practical situations where
source data is not available due to privacy and
storage reasons. Our algorithm has two parts
- first, we update that normalization statistics
which helps to compensate for the distribution
shift and second, we transfer knowledge from
the source models adhering to certain equivariant
and invariant transforms. The transforms helps to
efficiently extract the knowledge beyond vanilla
self-training. Through extensive experiments on
multiple semantic segmentation tasks, we show
how such a simple framework can be effective
in extracting knowledge from the source model,
for a variety of problem settings, and performs
much better or at par with current state-of-the-
art methods which are specifically tuned for the
respective settings.

1. Introduction

Deep neural networks often fail to generalize across datasets
even for the same task. It becomes quite challenging to
acquire and annotate data for every new dataset, especially
for dense prediction tasks. For example, a single image
from the Cityscapes dataset required about 1.5 hours to
annotate (Cordts et al., 2016). To avoid the requirement
of annotated target data, Unsupervised Domain Adaptation
(UDA) methods (Tzeng et al., 2017; Hoffman et al., 2018)
adapt the models learned with labeled source data to the

target dataset, without needing annotated target images.

These approaches assume access to data from both the
source and target for adaptation. Access to source data
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helps in grounding of source model resulting in a relatively
easier adaptation task. On the other hand, we address a
more restricted problem where we do not have access to
any source data, but only a trained source model. This
setting enables - 1) source-free adaptation (Yeh et al., 2021;
Li et al., 2020b; Liu et al., 2021; Xia et al., 2021; Kundu
et al., 2021; Huang et al., 2021), where privacy and storage
reasons bar us from accessing the source data, 2) test-time
adaptation (Sun et al., 2020; Mummadi et al., 2021; Wang
et al., 2021; Khurana et al., 2021), where because of privacy
as well as latency reasons we may not be able to use the
source data, 3) multi-source adaptation (Gong et al., 2021;
He et al., 2021; Zhao et al., 2019; 2021), where the challenge
of accessing datasets increases multi-fold, and 4) semi-
supervised learning (Hung et al., 2018; French et al., 2020;
Mendel et al., 2020; Mittal et al., 2021; Olsson et al., 2021),
where we have additional unlabeled source instances along
with the source model trained only on the labeled samples.
Regardless of the setting, our method is generic enough that
even if we have access to the source data, it can be used in
conjunction to our learning objective.

The main contributions of our work are:

e Our self-training based knowledge transfer approach
involving equivariant and invariant transforms, works
much better than vanilla self-training for source-free
adaptation. It also works well for the case where we
have access to multiple source models, which has never
been explored in literature for semantic segmentation.

e Compensating for distribution shifts by normalization
parameter updates helps in test-time adaptation as well
as obtaining a better model for source-free adaptation.

e We perform extensive experiments and ablation studies
across a variety of tasks to portray the generalisability
and efficacy of our approach (Figure 1).

2. Related Works

Source-free adaptation for semantic segmentation has only
recently gained attention. These works use pseudo-labeling
(Liu et al., 2021; You et al., 2021; Ye et al., 2021; Kundu
et al., 2021; Huang et al., 2021), domain alignment using
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Figure 1. Overview. Knowledge extraction from one/more source models without accessing source data at all. This setting enables
source-free adaptation from single or multiple models, test-time adaptation from a single test image and phased semi-supervised learning.

discriminators (Ye et al., 2021; Liu et al., 2021), target
image generation (Liu et al., 2021), and contrastive learning
(Huang et al., 2021). Source free adaptation is also observed
in the related, but more challenging setting of test-time
adaptation. Here, instead of adapting to a pool of target
data, the goal is to adapt the model at test-time with only
the current test samples. TENT (Wang et al., 2021) uses the
entropy loss as self-supervision from the model’s prediction
head itself to modulate the batch normalisation affine
parameters. (Mummadi et al., 2021) builds upon TENT and
introduces likelihood ratio based losses as an improvement
over the entropy loss. A few approaches (Nado et al., 2020;
Schneider et al., 2020; Khurana et al., 2021) propose to
combine source statistics with current target statistics to
adapt the model at test-time. Existing works on semi-
supervised learning assume access to both the labeled and
unlabeled data during training as compared to our phased
setting, where we train a source model on the labeled data,
and the update it using only the unlabeled samples, assuming
no access to the labeled samples. We provide a more
detailed discussion of related works in Appendix A.

3. Domain Adaptation from Source Models

The setting can be formally defined as follows. Consider
that we have a source model for semantic segmentation,
M, : REXWx3 _, REXWXC which takes as input an
RGB image and predicts a probability mass function over
the possible categories. H, W are the height and width
of the image and C' is the number of categories. We only
have access to the source model but not the source data.
The test instances originate from another domain (target),
different from the source. We are given an unlabeled target
dataset, D; = {X,;}" ,, to adapt the source model Mj to
a new model M, such that it performs better on samples
drawn from the target distribution, than directly using the
source model. In the case of multi-source adaptation, we
have multiple source models {M"}", to adapt from (n,
is the number of source models). For test-time adaptation,
we do not have the dataset D, but rather have to adapt to
every test instance. We consider the extreme case of test-
time adaptation, i.e., adaptation to single images (Khurana

et al., 2021), in an episodic setting, where we do not update
the model online on the test instances, but rather adapt to
every instance starting from the given source model only.
We also consider phased semi-supervised learning (SSL)
setting, where we want to improve the given source model
M using additional unlabeled samples from the source
domain.

3.1. Bridging the gap via statistics updates

BatchNorm (Ioffe & Szegedy, 2015) and InstanceNorm
(Ulyanov et al., 2016) are commonly used in deep neural
networks to avoid over-fitting, stabilize training, and faster
convergence. For every activation layer in the network, these
normalization methods estimate two parameters during
training, viz., the mean and variance, which are then used
in the testing phase. However, these parameters are only a
good estimate for the images in the training distribution.
Thus, in domain adaptation, where the target data may
belong to a different distribution than the source, it may
be useful to first update the mean and variance of the
normalization layers, using the unlabeled target data. We
choose a simple norm statistics update formulation, which is
a convex combination of the source statistics and the target
statistics, as follows:

o= s + (1= M)y
0 < Ao+ (1 - N)o? (1)

{us,0?} are the source model’s normalization statistics,
whereas {1, 02} are the statistics which are estimated from
the target data. This formulation is general enough to
be used for both test-time adaptation as well as source-
free domain adaptation. In source-free adaptation, as
we have an entire dataset of unlabeled samples from the
target domain, we can estimate its statistics by just forward
propagating the samples through the network. Moreover, in
this case, we also set the weight on the prior to be A = 0, as
we have enough samples to estimate the target statistics. In
test-time adaptation, we only have a single test image to
adapt, which may not be enough to get an accurate estimate
of the statistics. Thus, we keep the prior value to be high
A = 0.8, and update it with the other parameters of the
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network using the losses described next.

3.2. Self-Training with Transforms

Given the normalization updated source model M, we
use it to label the target images via confidence-filtered
pseudo labeling. Additionally, we impose consistency using
certain transforms, which gives the model an opportunity
to improve beyond learning from just the pseudo-labeled
dataset.

Pseudo-Labeling: The pseudo-labeling function Yy =
PL(M(X)) to label an image X with a model M can be
defined as follows:

No Label, otherwise

Vo — {j* = arg max,; [M(X)]™Y,  ifmax;[M(X)]"¥>p;
2
where x,y, represents the spatial co-ordinates, j €
{1,...,C}, and [M(X)]*¥ is C-dimensional summing
to 1, representing the pixel’s prediction. p; is the
threshold for prediction confidence of label j, which we set
to min(0.9, median of label-wise confidence), where the
median is computed over all pixel predictions for that label.
We label the unlabeled target D, using the pseudo-labeling
function to obtain a new dataset D; = {X;, Y;}™_,, where

¥, = PLOM,(X,)).

Training new model M; using the pseudo-labeled set Dy,
reduces the uncertainties in the source model M, offering
a better hypothesis on the target. However, this only offers
a limited room for improvement beyond the pseudo-label
distribution. We observe that certain transforms on the target
images actually lead to undesirable changes in the output.
We build on top of this observation and enforce certain
consistencies to transforms, as discussed next.

Equivariance. We observe that under certain
transformations to the input image, the predicted
segmentation maps do not appear as expected. This

motivates us to use this as constraint in the learning process.
For this type of transformation we want the network
output to be equivariant. Formally, considering a transform
T € 7T, the consistency constraint can be expressed as,

M; (T (X)) ~ T(M;(X)) 3)
Image mirroring and rotation fall under this transform set.

Invariance: In this case, we want the network output to
be invariant to the transform. Formally, if we consider a
transform T € 7;, then the consistency constraint can be
expressed as

M, (T (X)) =~ My(X) )

Drop-block and Gaussian blur belong to this transform.

Table 1. Results of adapting GTAS to Cityscapes. The top group
are methods which use source data during adaptation, while the
bottom group do not use any source data to adapt.

Source  Method Stuff ~ Things  mloU
BDL (Li et al., 2019) 61.7 38.9 48.5
CAG (Zhang et al., 2019) 61.2 42.0 50.2

Yes WeakDA (Paul et al., 2020) 61.0 38.8 48.2
Stuff (Wang et al., 2020) 62.1 39.9 49.2
FDA (Yang & Soatto, 2020) 60.3 432 50.4
SAC (Araslanov & Roth, 2021) 64.3 46.1 53.8
Source 45.6 31.6 375
URMA (S & Fleuret, 2021) 60.3 34.0 45.1

No LD(You et al., 2021) 60.1 34.9 455
SFUDA (Ye et al., 2021) 60.5 41.3 49.4
Ours 59.0 413 48.8

Please refer to Appendix E for more details on the
transformations used.

Learning from Collages. We further combine two images
into a single collage in the spatial domain. This has
similarities with Mixup (Zhang et al., 2017a) that uses
weighted combination of image pairs and their labels
to regularize model training. Detailed explanation for
this collaging process is provided in Appendix B. In our
algorithm, we use these collages in place of original images,
and hence X denotes these collage images.

For details specific to each task, please refer to Appendix D.

4. Experiments

Datasets: We evaluate our framework on three
combinations of source — target datasets covering both
outdoor and indoor scenes. For outdoor, we evaluate on
GTAS (Richter et al., 2016) — Cityscapes (Cordts et al.,
2016) and SYNTHIA (Ros et al., 2016) — Cityscapes. For
indoor, we use SceneNet (McCormac et al., 2017) — SUN
(Song et al., 2015). Please refer to Appendix C for more
details.

Implementation Details: To have a fair comparison with
the works in literature, we use the Deeplab-V2 (Chen et al.,
2017a) with ResNet-101 (He et al., 2016) as the network.
For more details, please refer to Appendix F.

Table 2. Results of adapting SceneNet to SUN. The top row group
does not use any source data to adapt, while the bottom row uses
full supervision on the target images.

Method Stuff ~ Things  mlIoU
Source 344 19.7 26.5
Ours 41.1 30.9 35.6

Full Supervision 54.9 45.5 49.8

Source-Free Adaptation: We first compare our method
with state-of-the-art in literature in Table 1 for GTAS —
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Table 3. Semi-supervised learning on Cityscapes (five random splits).

Source Data — | Yes No

Labeled Samples | Hungetal.  CutMix ECS Mittal etal. ClassMix | Source  Pseudo-Label Ours
1/8 58.8 60.3+12 6034038 59.3 61.3 59.2 £0.8 60.7 £ 0.8 62.0 £ 1.0
1/a 62.3 63.9+0.7 638407 61.9 63.6 615+06 61.84+06 634+08
Full set 67.7 67.5 66.9 65.8 66.2 66.2 66.2 66.2

Cityscapes, and SceneNet — SUN in Table 2. We present
the results for SYNTHIA — Cityscapes in the Appendix G.
Due to limited space, instead of presenting the category-
wise performances, we club them into COCO-style Stuff and
Things and present the category-wise results in Appendix G.
From the tables we can also see that our method outperforms
other source-free adaptation methods, even with just using a
batch size of 1, whereas some baselines use batch size > 1
to train.

Table 4. Source-free adaption from multiple source models
(GTA5+SYNTHIA — Cityscapes). Numbers in brackets are over
16 categories of SYNTHIA. ’-’ indicates results not available for
19 categories.

Source Yes No

Method DALU  MSDA-CL MADAN MADAN+ | Pseudo-Label Ours
mloU  43.1 (46.8) - (54.0) -(45.4) - (48.5) 45.6 (49.5) 48.5(52.6)

Multi-source Adaptation: In this case, we have two source
models trained on GTAS and SYNTHIA, and adapt the
model to Cityscapes (Table 4). We compare with DALU
(Gong et al., 2021), MSDA-CL (He et al., 2021), MADAN
(Zhao et al., 2019) and MADAN+ (Zhao et al., 2021),
which also use DeepLabv2+ResNet-101. In multi-source
domain adaptation, the challenge is to extract the useful
information from the multiple models, and not getting
negatively affected by some of the models which provide
incorrect information. So, the performances are expected to
be close to the best source model. E.g., in SYNTHIA, there
is limited data on three categories - terrain, truck, and train
and thus when adapted to Cityscapes, the model is not able
to recognize those categories at all, and thus the performance
on 19 categories is low. However, in multi-source domain
adaptation, with the GTAS model, our framework is able
to identify which model to use for what information, and
performs close to the best source model. When compared
with state-of-the-art methods which uses source data to
adapt, the performance obtained by our method is quite
close, even without using any source data.

Table 5. Results for test-time adaptation with a single iteration of
optimization at test time.
Source PTN BN TENT Entropy Likelihood Ours

Datasets

GTA5 — Cityscapes 375 367 404 376 384 38.3 435
SYNTHIA — Cityscapes 32.1 31.8 329 327 326 325 34.9
SceneNet — SUN 265 252 282 266 273 272 28.6

Test Time Adaptation (TTA): We perform test-time

adaptation using the same source models as above on all the
three datasets. We compare with TENT (Wang et al., 2021),
prediction time normalization (PTN) (Nado et al., 2020),
batch-normalization statistics update (BN) (Schneider et al.,
2020) with their recommended prior value, as well as using
the losses proposed in (Wang et al., 2021; Mummadi et al.,
2021) (Table 5). We observe that a simple change in the
batchnorm parameterization along with fine-tuning using
the pseudo-labeling loss is enough to achieve much better
performance than the source model and all other methods.

Phased Semi-Supervised Learning (SSL): In this setting,
we build source models on 1/8" and 1/4*" split of the
Cityscapes dataset, and then adapt the model on the the
remaining unlabeled data using our framework. We compare
with (Hung et al., 2018), CutMix (French et al., 2020), ECS
(Mendel et al., 2020), (Mittal et al., 2021) and ClassMix
(Olsson et al., 2021), which also use DeepLabv2+ResNet-
101. As can be seen in Table 3, our method with the
consistency constraints performs better than vanilla pseudo-
labeling, and even better than many methods in literature
which are designed specifically for SSL and use the labeled
source data in the learning process. The last row presents
the performance of the backbone in the fully supervised
setting for indicating the upper-bound.

5. Conclusion

We propose a framework for adapting semantic
segmentation models from source to target without
access to the labeled source data. We present a self-training
framework by enforcing consistencies with certain
transforms to efficiently extract information from the source
model. With only a few existing works in this challenging
setting, our approach compares favorably against strong
baselines. Empirical evaluation shows that our method
performs comparable to many state-of-the-art methods that
use source data to adapt. We further show the usefulness
of our approach for fully test-time adaptation in which
adaptation is done individually for each test image. Future
works can explore extracting information such as shape
priors, from the source and infusing them into the target
model, for better adaptation.
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A. Related Works

In this paper, we delve into three main problem settings where our generic knowledge transfer method would be useful -
source-free adaptation, test-time adaptation, and semi-supervised learning. We discuss works related to these problems
below.

Source-Free Domain Adaptation. In semantic segmentation, existing UDA methods can be categorized primarily into
three groups: output alignment (Tsai et al., 2018; Chen et al., 2018; 2017b; Hoffman et al., 2016; Zhang et al., 2017b;
Araslanov & Roth, 2021), pixel-adaptation (Chang et al., 2019; Choi et al., 2019; Hoffman et al., 2018; Murez et al., 2018;
Wu et al., 2018; Zhang et al., 2018; Yang & Soatto, 2020) and pseudo-labeling (Saleh et al., 2018; Zou et al., 2018; Lian
et al., 2019; Zhang et al., 2019; Li et al., 2020a; Pan et al., 2020; Shin et al., 2020; Mei et al., 2020; Dong et al., 2020).
There are also several methods that try to combine these strategies (Du et al., 2019; Li et al., 2019; Tsai et al., 2019; Vu
et al., 2019; Paul et al., 2020; Wang et al., 2020; Musto & Zinelli, 2020; Kim & Byun, 2020; Lv et al., 2020; Huang et al.,
2020; Subhani & Ali, 2020). Compared to these approaches, we assume no access to the source dataset, which is a more
realistic setting but makes the task much more challenging. Unlike the above methods, there have been a few works for
classification tasks which do not use source data, but only the source model for adaptation. The methods involve - entropy
minimization with divergence maximization (Liang et al., 2020), pseudo-labeling with self-reconstruction (Yeh et al., 2021),
generating additional target images (Li et al., 2020b) and self-supervision (Xia et al., 2021). Source-free adaptation for
semantic segmentation has only recently gained attention. These works use pseudo-labeling (Liu et al., 2021; You et al.,
2021; Ye et al., 2021; Kundu et al., 2021; Huang et al., 2021), domain alignment using discriminators similar to UDA (Ye
etal., 2021; Liu et al., 2021), target image generation (Liu et al., 2021), and contrastive learning (Huang et al., 2021). Some
methods modify the pseudo-labelling process by introducing negative labelling for pixels (You et al., 2021) and by using
robustness to dropout to regularise them (S & Fleuret, 2021). (Kundu et al., 2021) attacks the problem differently by making
the source model itself robust, which assumes access to the source data and the training process. In comparison, we do not
generate images, do not use any additional networks, and do not assume access to the source data or training process but
only the trained source model.

Test-Time Adaptation. A more challenging setting than source-free adaptation has recently been proposed where instead of
adapting to a pool of target data, the goal is to adapt the model at test-time with only the current test samples. TTT (Sun et al.,
2020) adds an auxiliary self-supervision branch while training the network to tune the encoder at test-time. This requires
modifications to the source model training procedure and thus access to the source data. To counter this, TENT (Wang et al.,
2021) uses the entropy loss as self-supervision from the model’s prediction head itself to modulate the batch normalisation
affine parameters. (Mummadi et al., 2021) builds upon TENT and introduces likelihood ratio based losses as an improvement
over the entropy loss. A few approaches (Nado et al., 2020; Schneider et al., 2020; Khurana et al., 2021) propose to combine
source statistics with current target statistics to adapt the model at test-time. Instead of assuming access to a batch of test
samples, we operate in the episodic setting, assuming access to only a single test instance (Wang et al., 2021; Khurana et al.,
2021).

Semi-Supervised Learning. Semi-supervised approaches assume access to both the labeled and unlabeled data during
training as compared to our phased setting, where we train a source model on the labeled data, and the update it using only
the unlabeled samples, assuming no access to the labeled samples. Existing methods are based on employing multiple
branches for adversarial training to differentiate between the predicted and ground truth segmentation distribution (Hung
et al., 2018) or to add collaborative training components to ensure low-high level consistency (Mittal et al., 2021), or
correction of pseudo-labels (Mendel et al., 2020). Also, (Olsson et al., 2021; French et al., 2020) suggest creating artificial
images by combining image pairs, and generating corresponding pseudo-labels.

B. Image Collages

Figure 2 illustrates the creation of image collages which are used to regularise model training. Given a pair of images X;, X,
the collage image is constructed by concatenating the first half of X; with the second half of X; along the width. Now, to
obtain the pseudo-labels for the collage image, we also concatenate the pseudo-labels PL(M(X;)) and PL(M,(X})).
The variations generated by collaging helps the model learn better decision boundaries as is evident from ablation study
discussed in Appendix K.
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Figure 2. Process of image and pseudo-label collage creation. We use such collages to learn the target model.

C. Datasets

GTAS — Cityscapes: In this setting, we consider GTAS (Richter et al., 2016) as the source and Cityscapes (Cordts et al.,
2016) as the target dataset. The source images are at 760 x 1280 resolution, while the target images are used at 512 x 1024.
The datasets have 19 categories. The source dataset has 24966 training images and the target has 2975 training images on
which we perform adaptation, and 500 validation images. We report the performance on these 500 validation images as is
the usual practice in the literature.

SYNTHIA — Cityscapes: In this setting, we consider SYNTHIA (Ros et al., 2016) as the souce and Cityscapes (Cordts
et al., 2016) as the target dataset. SYNTHIA contains 9400 training images. However, unlike GTAS, due to lack of proper
annotations for a few categories in SYNTHIA, we remove them from evaluation and report the results for 16 categories,
following the literature.

SceneNet — SUN: Both of the above two settings are for outdoor scenes, and in this setting we consider indoor scenes with
SceneNet (McCormac et al., 2016) as the source and SUN (Song et al., 2015) as the target. The SceneNet dataset has around
5 million simulated images. However, a lot of the images are rather simple with only a few categories in them. Thus, to
train the source model, we only choose the top 50, 000 images having the highest number of categories. The SUN dataset
contains 5285 training images on which we perform adaptation and 5050 test images which are used for evaluation. Both of
these datasets contain 13 categories. Specifically, we use the label transformation available with the SceneNet dataset ! to
map the labels in the SUN dataset such that it matches with the label space of SceneNet.

D. Methodology for different tasks

Source-Free Adaptation. Using the recipes discussed above, the steps for source-free adaptation are as follows: first,
compute the norm statistics over the entire dataset using only forward passes through the network. Then use Eqn 1 to
replace the network’s norm parameters, setting A = 0, as we have enough samples to get a low variance estimate of the
statistics. After we obtain the norm updated network, we learn a new network using self-training along with the transforms
by optimizing for the following objective:

min Lo= Y (Mt (MS(X))) 5)
XeD,
M(T(X)) = T(M(X)) VX €D, TeTe @)

l. is the cross-entropy loss. Note that we enforce the consistency constraints using the outputs of the target model to allow
for improvement beyond the source model, while still extracting information from the source model using the loss Eqn 5.

In practice, we compose the two sets of transforms to strengthen its power. To do so, in each iteration, we randomly choose a
set of transformations 7 = {Ty, ..., T} € P(T;UT.)\ 0. Due to the difference in consistency required to these transforms,
they need to be composed differently for input and output. The input transform is a composition of all the transforms,
T; = Tgo---o Ty, but to compose the output transform, we remove those drawn from 7;, and then compose the rest in
the same manner as input transform to obtain T,. Then, the constraints can be simplified as M;(T; (X)) ~ T,(IM;(X)).

'https://github.com/ankurhanda/sunrgbd-meta-data
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We approximate the constraint using two losses, and impose it via the penalty method. For every iteration, we consider
T,(M,(X)) i.e., the transformed outputs from the current iteration target model as ground-truths for the losses. The two
losses are:

=3 lc(Mt(Ti(X)),TO(Mt(X)))—k

XeD,

Lo (ML(T3(X)), T (PLOML (X)) ) ®)

where [, is the cross-entropy loss. The first loss is a form of soft pseudo-labeling and computed for every pixel, whereas the
second loss is hard pseudo-labeling, which only computes the loss for the confident pixels. We optimize using Stochastic
Gradient Descent (SGD). Note that we use the pseudo-labels using M for ground-truth in the loss function of Eqn. 5 and
M., in the current iteration as the ground-truth for the loss function in Eqn. 8. For clarity, the SGD updates for the k"
iteration, with 7 as the learning rate can be expressed as follows:

Mf+1 = M? - nVMt (‘CC(MS) + ‘CT(Mf)) (9)
where the argument in the brackets are the models used to obtain the labels to compute the losses.

Multi-source Adaptation. In this case, we have multiple source models, and would want to extract the knowledge from
these source models to a target model. For each of the source models, we update the norm as above. Let us denote the norm
updated source models as {MzG 2 ,. Now, if we can formulate a function M, which gathers the knowledge from these
multiple source models, then the rest of the learning mechanism can be used as described above. Now, in multi-source
adaptation, the challenge is to identify the best model from which we should transfer the knowledge, and avoid negative
transfer. We use the entropy of every pixels as a confidence measure to weigh the predictions. Formally, the composite
source model which combines the predictions from these multiple source models can be expressed as follows:

ML OOF = 3 L e (10)

where [e;] " = 1/B[~ tog[M} ()] ¥]].

This formulation is simple, allows category-wise knowledge extraction across models depending on their confidence, and
also fits in well with the proposed single source approach. Note that in this case, we still learn a single target model, which
extracts knowledge from all the source models.

Test-Time Adaptation. This setting has been introduced in recent works (Sun et al., 2020; Wang et al., 2021; Mummadi
et al., 2021; Khurana et al., 2021). We consider the most realistic scenario - given only the source model, we need to adapt
to a single image at a time, and reverting back to the source model after every sample. This is termed as the episodic setting
in literature. Here, as discussed in Section 3.1, we replace the batch norm layer with the formulation in Eqn 1, where p, oy
is estimated using a single test image. We initialize A = 0.8, treating it as a learnable parameter. We then optimize the
pseudo-labeling loss in Eqn 5, for only the prior and the classifier layer of the network, keeping the other parameters of the
network frozen. To maintain efficient inference during test-time, we limit the optimization to only a single backward pass.

Phased Semi-Supervised Learning (SSL): Our knowledge transfer method also works for semi-supervised learning, where
we have a small amount of labeled data and large amount of unlabeled data, both from the same domain. We learn the
source model M using the labeled dataset, and then solve the same optimization problem as in Eqn 5, 6, 7, using only the
additional unlabeled data from the same domain.

E. Details for various transforms

Illustrations of various invariant and equivariant transforms used is shown in 3. For image mirroring, we first randomly
choose a column, vertically splitting the image, and mirror the larger side of the image onto the smaller side. For rotation,

we randomly choose the rotation degree between [—5°, +5°]. In drop-block, we randomly choose k blocks of size b x b and

set them to 0, where % ~ p, with two free parameters b, p. H and W are the image height and width. For Gaussian blur,

we choose a kernel size and filter variance. We perform a hyper-parameter analysis for these parameters in Sections I and J.
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Mirror Rotate Drop-Block Gaussian Filter

i

Target Image

Composition of Transformations on Output T, (PL(M,(X)))

Figure 3. Transforms. Different transforms used in our algorithm. The left-most side shows an image with the pseudo-labels obtained
from the source model M, which are used to compute the loss L£.. The top row shows the transformations individually, followed by
their random compositions in the second row, and the last row shows the transformations on the output of the target model for a certain
iteration, which are used as ground-truth for computing loss L.

F. Implementation Details

We use one GPU to train our models with a batch size of 1 in all experiments. We use SGD with an initial learning rate of
2.5 x 10~* with polynomial decay of power 0.9 (Chen et al., 2017a). We use the standard metric of mean intersection over
union (mloU) (Chen et al., 2017a) to evaluate all algorithms.
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Figure 4. Comparing our approach with the methods that use source data, plotted on the time axis when the works were published (on
GTAS — Cityscapes). Note that our method performs much better than many recent methods even without using any source data.

G. Category-wise Segmentation Results

In this section, we present the category-wise segmentation results for all three dataset settings, GTA5—Cityscapes,
SYNTHIA—Cityscapes and SceneNet—SUN in Table 6, 7 and 8 respectively. Stuff includes road, sidewalk, building,
wall, fence, veg, terrain and sky; while Things include sign, person, rider, car, truck, bus, train, mbike, bike, light and pole.
Additionally, we also plot the performances methods in the literature with the time when they were published in Figure 4 on
GTAS—Cityscapes.

H. Semi-Supervised Learning Results on SUN

Table 9 presents results of semi-supervised learning on the SUN dataset. As we can see that vanilla pseudo-labeling does not
improve the performance beyond the source model. However, our method performs much better than the source. Moreover,
the amount of improvement is more for lower labeled data regime, which shows that using the unlabeled data actually helps.
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Table 6. Results of adapting GTAS to Cityscapes. The top row group are methods which use source data during adaptation, while the
bottom row group do not use any source data to adapt.

5 5 o § g g
Source  Method § :7§ ~§§ 5 Vi"é) §O -5 53 Aﬁa Z:év g’ § ‘gb :‘? g ~c§ 5 § ~§) mloU
AdaptOutput (Tsai et al., 2018) ~ 86.5  25.9 79.8 22.1 20.0 236  33.1 21.8 818 259 759 573 262 763 298 321 7.2 295 325 41.4
AdvEnt (Vu et al., 2019) 89.4 331 81.0 266 268 272 335 247 839 367 788 587 305 848 385 445 1.7 31,6 324 455
SSF-DAN (Du et al., 2019) 90.3 389 81.7 248 229 305 370 212 848 388 769 588 307 857 306 381 59 283 369 454
BDL (Lietal., 2019) 91.0 447 842 346 276 302 360 360 850 436 8.0 586 316 833 353 497 33 288  35.6 485
Yes CAG (Zhang et al., 2019) 904 516 83.8 342 278 384 253 484 854 382 781 586 346 847 219 427 411 293 372 50.2
‘WeakDA (Paul et al., 2020) 91.6 474 840 304 283 314 374 354 839 383 839 612 282 837 288 413 8.8 247 464 482
Stuff (Wang et al., 2020) 90.6  44.7 84.8 343 287 31,6 350 376 847 433 853 57.0 315 83.8 42,6 485 19 304 39.0 492
FDA (Yang & Soatto, 2020) 925 533 82.3 265 276 364 405 388 822 398 780 626 344 849 341 531 168 277 464 50.4
SAC (Araslanov & Roth, 2021) 904 53.9 86.6 424 273 451 485 427 874 401 8.1 675 297 8.5 491 546 9.8 266 453 53.8
Source 797 218 66.8 193 206 228 289 129 763 195 609 562 266 778 333 277 39 250 325 375
URMA (S & Fleuret, 2021) 923 552 81.6  30.8 188  37.1 17.7 12.1 842 359 838 577 241 817 215 443 6.9 241 404 45.1
No LD(You et al., 2021) 91.6 532 80.6 366 142 264 316 227 831 421 793 573 266 821 410 50.1 0.3 259 19.5 455
HCL (Huang et al., 2021) 920 550 804 335 246 371 351 288 830 376 83 594 276 8.6 323 366 141 287 430 48.1
SFUDA (Ye et al., 2021) 952 406 852 306 261 358 347 328 853 417 795 610 282 865 412 453 156  33.1  40.0 49.4
Ours 892 373 824 290 235 318 346 287 848 455 802 626 326 8.1 456 438 0.0 346 544 48.8

Table 7. Results of adapting SYNTHIA to Cityscapes. The top group are methods which use source data during adaptation, while the

bottom row do not use any source data to adapt. mIoU and mIoU™ are averaged over 16 and 13 categories.

Source  Method Sg '§ _,;5 § ﬁ § EZ 43% >ﬁ0 "w’? § ’Eg g ~§ '-SS .ﬁb mloU  mloU™
AdaptOutput (Tsai et al., 2018)  79.2 372 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 535 196  67.0 295 216 313 39.5 459
AdvEnt (Vu et al., 2019) 85.6 422 79.7 8.7 0.4 259 54 8.1 80.4 84.1 579 23.8 733 36.4 142 33.0 41.2 48.0
SSF-DAN (Du et al., 2019) 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 575 21.6 8.0 36.0 19.3 345 - 50.0

Yes CAG (Zhang et al., 2019) 84.7 40.8 81.7 7.8 0.0 35.1 13.3 227 84.5 71.6 64.2 27.8 80.9 19.7 227 48.3 445 514
WeakDA (Paul et al., 2020) 92.0 53.5 80.9 11.4 0.4 21.8 3.8 6.0 81.6 844 608 244 805 39.0 260 417 443 51.9
Stuff (Wang et al., 2020) 83.0 440 80.3 - - - 17.1 15.8 80.5 81.8 599 33.1 702 373 28.5 458 - 52.1
FDA (Yang & Soatto, 2020) 79.3 35.0 732 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 384 51.1 - 52.5
SAC(Araslanov & Roth, 2021) 89.3 472 85.5 26.5 1.3 43.0 455 32.0 87.1 89.3 63.6 254 8.9 356 304 530 52.6 59.3
Source 37.6 18.7 73.8 9.95 0.1 26.4 8.9 139 747 804 524 16.1 39.2 21.9 132 258 32.1 36.7
URMA (S & Fleuret, 2021) 59.3 24.6 71.0 14.0 1.8 315 18.3 320 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0

No LD(You et al., 2021) 71.1 33.4 79.4 58 0.5 23.7 52 13.0 81.8 783 56.1 21.6 803 496 28.0 48.1 42.6 50.1
HCL (Huang et al., 2021) 80.9 349 76.7 6.6 0.2 36.1 20.1 282  79.1 83.1 55.6 256 788 32.7 24.1 327 435 50.2
SFUDA (Ye et al., 2021) 90.9 455 80.8 3.6 0.5 28.6 8.5 26.1 83.4 83.6 552 25.0 795 32.8 202 439 442 51.9
Ours 74.3 33.7 78.9 14.6 0.7 31.5 21.3 28.8 80.2 81.6  50.7 24.5 78.3 1.6 344 537 43.7 50.2

Table 8. Results of adapting SceneNet to SUN.

supervision on the target images.

SceneNet — SUN

2 . z

= = 5 = = = g
Method 2 s 8 5 2 s & E K z E £ mloU
Source 196 101 222 425 654 213 134 209 182 270 62 571 202 265
Ours 353 235 341 487 736 267 111 299 369 381 150 632 272 356
Full Supervision ~ 53.1  32.6 540 600 824 351 334 432 457 527 368 720 468 498

I. Hyper-parameter analysis of cutout

The top row group does not use any source data to adapt, and the bottom row uses full

In this section, we analyse the effect of the hyper-parameters involved in the cutout transformation. Recall from the paper, in
this transformation, we choose two parameters: size b of the square block, and the percentage p of the image to be removed.
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Table 9. Semi-supervised learning on SUN (five random splits).

Labeled Samples \ Source Pseudo-Label Ours

1/8 41.7 40.9 44.6
1/4 443 43.3 46.7
Full set 49.8 49.8 49.8

g 48.1 48.3 48.3 47.8

(g 48.4 48.2 48.3 48.3

32 iR

Block size (b)

64

ikLy 48.5

005 01 02 03
Percentage of image removed (p)

Figure 5. Ablation study of the cutout transformation.

Given these two parameters, we choose the number of blocks to be removed as k = 2 1;)12W_ We execute our framework for

various values of b and p, while keeping the rest of the framework same, and present the performance obtained in Figure
5. By using this transform, we want the network to learn rich context information, while performing inpainting in the
output space. As can be seen, with lower block size and higher percentage of image removed, the performance degrades.
This is because by doing so the image becomes noisy, rather than structured removal, i.e., removed portions become well
distributed throughout the image, which makes it harder to learn context information. However, with higher block size, and
moderate percentage of image removed, the performance increases. We choose b = 64, p = 0.2, in our experiments on
outdoor images, where the resolution of the image is high, and we choose b = 32, p = 0.1, for indoor experiments, with
lower image sizes.

J. Hyper-parameter analysis of Gaussian filter

48.6 48.3 47.8
48.6 48.3 48.0

48.8 48.3 48.0

Standard deviation

48.8 48.3 483

3 5 11 21 25
Kernel size

Figure 6. Ablation study of the Gaussian filtering transformation.

In this section, we analyse the effect of two hyperparameters in the Gaussian filter transformation. The two hyper-parameters
are the kernel size and the standard deviation of the filter. Instead of keeping a single standard deviation for the filter, we
choose it randomly between [0.1, 0,42 ], Where 0,4, 1S the hyper-parameter to choose. The image becomes more blurry
with higher kernel size and lower standard deviation. As the image becomes more blurry, it becomes difficult for the network
to figure out the content, and thus we see a degradation in performance in the top right corner in Figure 6. Note that the
standard deviation mentioned in the figure signify o,,,,,.. We use a kernel size of 5 and 0,4, = 2.
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K. Ablation Studies

Table 10. Ablation of the transformations.
Collage  Mirror Rotate  Gaussian  Cutout GTAS SYNTHIA SceneNet
— Cityscapes  — Cityscapes — SUN

v 46.4 40.4 322
v 459 41.9 34.6

v 45.5 42.3 34.8

v 46.4 42.5 34.5

v 45.8 41.9 33.1

v v v v v 48.8 43.7 35.6

Ablation study of transforms: In this experiment, we analyse the effect of transforms we use in our framework and the
effect of learning from collage images. We use two spatial transforms, Mirror and Rotate and two augment transforms,
Gaussian filter and Cutout. The results are presented in Table 10. We evaluate the model by adding only one transform at a
time. As can be seen, the transforms individually improve the performance beyond just pseudo-labeling. Moreover, learning
from collage images also improves the performance beyond pseudo-label learning from single images. The maximum
gain is achieved when we use all of the above together. It is interesting to note that augment transforms beyond a certain
parameter limit do not work as well, which is intuitive, as the content of the image may change beyond what is necessary for
fine segmentation. For example, in Gaussian filtering, using a filter size more than 20 does not help with an image of size
512 x 1024.

Ablation study of the framework: In this experiment, we break down every part of the framework and evaluate their
performance. We present the results in Table 11 for all the datasets. When we first update the normalization parameters, the
performance improves by 1 — 4%. Then using the updated network for pseudo-label training using the target images offers a
further 4 — 5% improvement. Now, imposing the transform constraints using the hard and soft constraint losses as in Eqn. 8
along with the collage images further improves the performance by about 3% compared to just pseudo-labeling.

Ablation of design choices: We perform ablation of various choices involved in designing our proposed algorithm. The
first one is using category-wise thresholds for pseudo-labeling, compared to uniform thresholding for all labels. To compare,
we execute our framework with an uniform threshold of 0.9 for all the labels (following (Li et al., 2019)), as mentioned in
the sixth row in Table 11. We observe that using label-wise thresholding (“Ours” in Table 11) performs better by 1.5 — 4%
than uniform thresholding.

In the next ablation, we study the effect of using the norm updated source model M; instead of target model M; in current
iteration, for the constraints of Eqn. 6, 7. If we apply the transform constraints using M rather than M;, then we limit its
ability to improve beyond the fixed pseudo-labels, albeit with transforms applied on them. In other words, when using M,
for the constraints, the optimization process is allowed to learn the target model and self-improve in a way such that the
constraints are satisfied on the final target model. This helps to improve the performance, as is evident by comparing the
seventh row in Table 11 with the last row.

Next, we investigate whether to fine-tune the source model for adaptation or train a new target model from scratch. As can
be observed from the eighth row of Table 11, fine-tuning performs worse than our method where we train a new target
model from scratch. Note that the learning rate and the number of training epochs are kept the same for both cases. This can
be attributed to the source model being already in a local optima in the loss landscape, thus may be less influenced by the
pseudo-label losses and constraints.

Finally, we use the transforms in the standard augmentation setting (but stronger than normal augments), i.e., augment the
images, pseudo-label them and learn the target model using them. We use equal portion of original and augmented images,
as in our method. The results are presented as “PL+augment” in Table 11, which shows that our consistency based approach
performs much better. This is because the pseudo-labels are much better on the original images rather than on the augmented
ones, and it is better to transform the pseudo-labeled image, rather than pseudo-labeling the transformed image.
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Table 11. Ablation of loss functions and design choices.

Update  Pseudo PL + soft PL + hard Uniform Constraints  Finetuning PL +

Datasets Source . . . Ours
Norm Label constraints  constraints | thresholds using M M, augment

GTAS — Cityscapes 375 41.4 45.6 48.2 479 473 473 48.6 43.1 48.8

SYNTHIA — Cityscapes 32.1 35.3 40.2 43.1 43.0 41.6 422 433 39.1 43.7

SceneNet — SUN 26.5 27.4 32.1 35.0 34.8 31.9 332 28.9 33.8 35.6

L. Qualitative Analysis

In Figure 7 we present a visual comparison of our method with directly applying the source model on the target images,
shown as “No Adapt”. As can be seen in the first column, our method is able to properly label the signs, even though the
source model does not have them, as shown in “No Adapt”. Similar discussions can be extended to results in the second
column. In the third and fourth columns, the source model is very confused with the shadows on the chairs and tables, and
assigns them multiple labels. However, our method is able to predict the accurate labels with proper segmentation. In the
last column, the network mistakes most portion of the road as sidewalk, a prior that pedestrians can be more often seen on
sidewalks than roads. However, our method is able segment the road and sidewalk properly and is also able to segment a few
of the road signs in the background.

GTAS5 - Cityscapes SceneNet - SUN SYNTHIA - Cityscapes

Image

Source

Ours

M4

Ground Truth

Figure 7. Qualitative visualization. The first two columns and the last two columns show results on outdoor scenes, while the middle two
columns show results on indoor scenes.



